

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 4th Semester Examination, 2021

GE-MATHEMATICS

Full Marks: 60

ASSIGNMENT

The figures in the margin indicate full marks. All symbols are of usual significance.

The question paper contains MATHGE4-I, MATHGE4-II, MATHGE4-III, MATHGE4-IV \& MATHGE4-V.

The candidates are required to answer any one from the five courses.
Candidates should mention it clearly on the Answer Book.

MATHGE4-I

Cal. Geo. and DE.

GROUP-A

1. Answer the following questions:
$2 \times 5=10$
(a) Let the axes of a given coordinate system be changed to lines making an angle α with the corresponding old axes, without changing the origin. Let the coordinate of a point A with respect to the first system be $(\sqrt{3}, 1)$ and its coordinates with respect to the second system be $(2,0)$. Then find the value of α.
(b) Solve: $\frac{d y}{d x}+\tan y \tan x=\cos x \sec y$
(c) Find the area of the lemniscates $r^{2}=a^{2} \cos 2 \theta$.
(d) Find the envelope of the family of straight lines $y=m x+\sqrt{a^{2} m^{2}+b^{2}}, m$ being the parameter.
(e) Determine the conic represented by $3 x^{2}+10 x y+3 y^{2}-2 x-14 y-13=0$.

GROUP-B

Answer all the following questions

2. (a) If by a rotation of coordinate axes the expressions
$a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ is changed to

$$
a^{\prime} x^{2}+2 h^{\prime} x y+b^{\prime} y^{2}+2 g^{\prime} x+2 f^{\prime} y+c^{\prime}=0
$$

show that $a^{\prime}+b^{\prime}=a+b$ and $a^{\prime} b^{\prime}-h^{\prime 2}=a b-h^{2}$.
(b) Test whether the equation $(x+y)^{2} d x-\left(y^{2}-2 x y-x^{2}\right) d y=0$ is exact and hence solve.
(c) If $I_{n}=\int_{0}^{\pi / 2} x \sin ^{n} x d x, n>1$ show that $I_{n}=\frac{n-1}{n} I_{n-2}+\frac{1}{n^{2}}$.

Hence evaluate $\int_{0}^{\pi / 2} x \sin ^{5} x d x$.

UG/CBCS/B.Sc./Hons./4th Sem./Mathematics/MATHGE4/2021

3. (a) Show that the envelope of the family of circles whose centres lie on the parabola $y^{2}=4 a x$ and which pass through its vertex is the curve $y^{2}(2 a+x)+x^{3}=0$.
(b) Evaluate: $\lim _{x \rightarrow \infty}\left\{x-\sqrt[n]{\left(x-a_{1}\right)\left(x-a_{2}\right) \cdots\left(x-a_{n}\right)}\right\}$
(c) If $y=a\left(x+\sqrt{x^{2}-1}\right)^{n}+b\left(x+\sqrt{x^{2}-1}\right)^{n}$ prove that $\left(x^{2}-1\right) y_{n+2}+x(2 n+1) y_{n+1}=0$.
4. (a) Solve: $\left(x^{2}+y^{2}+x\right) d x+x y d y=0$
(b) If a plane passes through a fixed point (f, g, h) and cuts the axes at the points P, Q, R respectively then show that the locus of the centre of the sphere passing through the origin and the points P, Q, R is $\frac{f}{x}+\frac{g}{y}+\frac{h}{z}=2$.
(c) Find the volume of the solid generated by revolving the cycloid

$$
x=a(\theta+\sin \theta), \quad y=a(1+\cos \theta)
$$

about its base.

GROUP-C

Answer following questions

5. (a) Show that the locus of the point of intersection of perpendicular tangents to the conic $l / r=1+e \cos \theta$ is $r^{2}\left(1-e^{2}\right)+2 l e r \cos \theta-2 l^{2}=0$.
(b) Find the range of values of x for which $y=x^{4}-6 x^{3}+12 x^{2}+5 x+7$ is concave upwards.
6. (a) Show that the points of intersection of the curve

$$
2 y^{3}-2 x^{2} y-4 x y^{2}+4 x^{3}-14 x y+6 y^{2}+4 x^{2}+6 y+1=0
$$

and its asymptotes lie on the line $8 x+2 y+1=0$.
(b) Find the trace the curve of $y^{2}(2 a-x)=x^{3}$.

MATHGE4-II

Algebra

GROUP-A

1. Answer the following questions:
(a) Find $\operatorname{Sin}^{-1}(2 i)$ and $\sin ^{-1}(2 i)$.
(b) If α, β, γ be the roots of the equation $x^{3}+p x^{2}+q x+r=0$, find the equation whose roots are $\frac{1}{\alpha}, \frac{1}{\beta}, \frac{1}{\gamma}$.
(c) Let a, b, c be positive real numbers. Prove that $\frac{a}{b}+\frac{b}{c}+\frac{c}{a} \geq 3$.
(d) Give an example of a symmetric relation which is neither reflexive nor transitive.

UG/CBCS/B.Sc./Hons./4th Sem./Mathematics/MATHGE4/2021

(e) Find the eigenvalues and eigenvectors of the matrix $\left[\begin{array}{ll}3 & 0 \\ 2 & 3\end{array}\right]$.

GROUP-B

Answer the following questions

2. (a) Let z be a variable complex number such that the ratio $\frac{z-i}{z+1}$ is purely imaginary. Show that the point z lies on a circle in the complex plane.
(b) If $z=\cos \theta+i \sin \theta$ and $\varsigma=\cos \varphi+i \sin \varphi$, prove that $\frac{z^{m}}{\varsigma^{n}}+\frac{\varsigma^{n}}{z^{m}}=2 \cos (m \theta-n \varphi)$, where m, n are integers.
(c) Find the general values and the principal value of $i^{x+i y}$, where x, y are real. Also check the principal value for x is an even and an odd integer.
3. (a) Determine the nature of the roots of the equation $x^{6}+2 x^{5}-5 x^{4}-3 x^{2}-2 x+19=0$, by using the Descartes' Rule of signs.
(b) Let α, β, γ be the roots of the equation $x^{3}-5 x^{2}+3 x-1=0$. Find the equations whose roots are $\alpha-\beta \gamma^{2}, \beta-\gamma \alpha^{2}, \gamma-\alpha \beta^{2}$ and deduce the condition that the roots of the given equation may be in geometric progression.
(c) Using the Cayley-Hamilton Theorem, find the inverse of the matrix

$$
\left[\begin{array}{ccc}
1 & -1 & 0 \\
1 & 2 & -3 \\
2 & -1 & 3
\end{array}\right]
$$

4. (a) Let $f: A \rightarrow B$ be a mapping. A relation ρ is defined on A by " $x \rho y$ if and only if $f(x)=f(y), x, y \in A$ ". Show that ρ is an equivalence relation on A.
(b) If $a \equiv b(\bmod m)$ and $a \equiv b(\bmod n)$ where $\operatorname{gcd}(m, n)=1$, prove that $a \equiv b(\bmod m n)$.
(c) Reduce the following matrix:

$$
\left[\begin{array}{ccccc}
7 & 0 & 2 & 1 & 0 \\
1 & 0 & 2 & 0 & 1 \\
2 & 8 & 4 & -4 & 2 \\
3 & 5 & 1 & 3 & 6
\end{array}\right]
$$

into row reduced echelon form and hence find its rank.

GROUP-C

Answer the following questions

5. (a) If $n \in \mathbb{Z}$, then show that $2 n+1 \leq 2^{n}$ for all $n \geq 3$.
(b) Solve the equation $x^{4}+3 x^{3}+5 x^{2}+4 x+2=0$.

UG/CBCS/B.Sc./Hons./4th Sem./Mathematics/MATHGE4/2021

6. (a) Let x be an eigen-vector corresponding to the eigen-value λ of a matrix M and n be a positive integer. Show that x is an eigen-vector of M^{n} corresponding to λ^{n}.
(b) Determine the conditions for which the following system of equations has (i) no solution, (ii) unique solution and (iii) many solution:

$$
\begin{aligned}
& x+2 y+z=1 \\
& 2 x+y+3 z=k \\
& x+\alpha y+z=k+1
\end{aligned}
$$

MATHGE4-III

Differential Equation and Vector Calculus
 GROUP-A

Answer all the following questions

1. (a) Find the Wronskian of x and $x e^{x}$. Hence, conclude whether or not these are linearly independent.
(b) Solve $x^{2} y^{\prime \prime}+x y^{\prime}-9 y=0$, given that $y=x^{3}$ is a solution.
(c) Find $\nabla(\log |r|)$, where $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$.
(d) If vectors \mathbf{a} and \mathbf{b} are irrotational, show that $\mathbf{a} \times \mathbf{b}$ is solenoidal.
(e) What are the order and degree of the differential equation of the family of curves $y^{2}=2 c(x+\sqrt{c})$.

GROUP-B

Answer all the following questions

2. (a) By computing the appropriate Lipschitz constant, show that the following function

$$
f(x, y)=x^{2} \cos y+y \sin ^{2} x
$$

satisfy Lipschitz condition on the domain $D:|x| \leq 1,|y|<\infty$ of $x y$ plane.
(b) Solve the differential equation $\frac{d^{2} y}{d x^{2}}+a^{2} y=\sec a x$ with the symbolic operator D.
3. (a) Apply the method of variation of parameters to solve the following differential equation

$$
(x-1) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+y=(x-1)^{2}
$$

(b) If $\vec{a}=(2 y+3) \hat{i}+z x \hat{j}+(y z-x) \hat{k}$, evaluate $\int \vec{a} \cdot \overrightarrow{d r}$. Where the integration is over the curve $x=2 t^{2}, y=t, z=t^{3}$ from $t=0$ to $t=1$.
4. (a) Show that $\mathbf{F}=2 x y z^{2} \mathbf{i}+\left(x^{2} z^{2}+z \cos y z\right) \mathbf{j}+\left(2 x^{2} y z+y \cos y z\right) \mathbf{k}$ is a conservative field of force. Find the scalar potential \emptyset. Find also the work done in moving an object in this field from the point $(0,0,1)$ to $\left(1, \frac{\pi}{4}, 2\right)$.
(b) Use method of undetermined coefficient to solve the following differential equation:

$$
\left(D^{2}-4 D+4\right) y=x^{3} e^{2 x}+x e^{2 x}, \quad \text { where } D \equiv \frac{d}{d x}
$$

GROUP-C

Answer all the following questions

5. (a) If $y_{1}(x)$ and $y_{2}(x)$ are any two solutions of $a_{0}(x) y^{\prime \prime}(x)+a_{1}(x) y^{\prime}(x)+a_{2}(x) y(x)=0$, show that the linear combination $c_{1} y_{1}(x)+c_{2} y_{2}(x)$, where c_{1} and c_{2} are constants, is also a solution of the given equation.
(b) Solve: $\frac{d x}{y+z}=\frac{d y}{z+x}=\frac{d z}{x+y}$
6. Evaluate the line integral $\int_{C} \mathbf{F} \cdot \mathbf{d r}$ wehre $\mathbf{F}=\left(y^{2}+z^{2}\right) \mathbf{i}+\left(z^{2}+x^{2}\right) \mathbf{j}+\left(x^{2}+y^{2}\right) \mathbf{k}$ from $(0,0,0)$ to $(2,4,8)$ and C is the curve given by $\mathbf{r}=t \mathbf{i}+t^{2} \mathbf{j}+t^{3} \mathbf{k}$.

MATHGE4-IV

Group Theory

GROUP-A

Answer all the following questions

1. Find the order of the permutation

$$
\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
2 & 1 & 5 & 4 & 6 & 3
\end{array}\right)
$$

in the permutation group S_{6}.
2. Let $G=\left(\mathbb{Z}_{8},+\right)$ and $f: G \rightarrow G$ be a homomorphism defined by

$$
f([x])=2[x]
$$

Find $\operatorname{ker} f$.
3. For each positive integer $n \geq 2$, let U_{n} denotes the set of all positive integers that are smaller than n and relatively prime to n. Consider the group U_{n}, equipped with multiplication modulo n. Show that for any integer $n>2$, there exist at least two elements in U_{n} that satisfy $x^{2}=1$.
4. Show that if two right cosets $H a$ and $H b$ of a group G be distinct, then the left cosets $a^{-1} H$ and $b^{-1} H$ are also distinct.
5. Prove that the group of integers $(\mathbb{Z},+)$ is not isomorphic to the group of rationals $(\mathbb{Q},+)$.

GROUP-B

Answer all the following questions

6. (a) Show that the set \mathbb{Z}_{1} of all odd integers forms a group with respect to the binary operation * defined on \mathbb{Z}_{1} by $a * b:=a+b-3$ for $a, b \in \mathbb{Z}_{1}$.

UG/CBCS/B.Sc./Hons./4th Sem./Mathematics/MATHGE4/2021

(b) For $\theta \in \mathbb{R}$, let \mathbb{R}_{θ} denotes the rotation matrix

$$
\mathbb{R}_{\theta}:=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

Show that the set $S L_{2}(\mathbb{R}):=\left\{\mathbb{R}_{\theta}: 0 \leq \theta<2 \pi\right\}$ forms a group under matrix multiplication. Find two non-trivial finite subgroups of $S L_{2}(\mathbb{R})$.
7. (a) Prove that there does not exist an onto homomorphism from the group $\left(\mathbb{Z}_{6},+\right)$ to the group $\left(\mathbb{Z}_{4},+\right)$.
(b) Show that $(\mathbb{Q},+)$ cannot be isomorphic to $\left(\mathbb{Q}^{*}, \cdot\right)$, where $\mathbb{Q}^{*}=\mathbb{Q}-\{0\}$.
(c) Find all the subgroups of D_{4}.
8. (a) Suppose the table below is a group table. Fill in the blank entries.

$*$	e	a	b	c	d
e	e				
a		b			e
b		c	d	e	
c		d		a	b
d					

Is this group cyclic? - Justify.
(b) Let \mathbb{R} denote the group of all real numbers under addition and \mathbb{Z} denote the group of all integers under addition. Let C denote the unit circle in the complex plane, i.e., $C:=\{z \in \mathbb{C}:|z|=1\}$.

Consider C as the group under usual complex multiplication. Exhibit a surjective homomorphism $\varphi: \mathbb{R} \rightarrow \mathbb{C}$ with $\operatorname{ker} \varphi=\mathbb{Z}$. Hence conclude that \mathbb{R} / \mathbb{Z} is isomorphic to \mathbb{C}.

GROUP-C

Answer all the following questions

9. (a) If H is a subgroup of a group G such that $(a H)(H b)$ for any $a, b \in G$ is either a left or a right coset of H in G, then prove that H is normal.
(b) Show that homomorphic image of a finite group is finite.
10.(a) For a positive integer $n \geq 2$, exhibit a homomorphism from the symmetric group S_{n} to the group \mathbb{Z}_{2} of integers modulo 2. What is the kernel of this homomorphism?
(b) In N is a normal subgroup of a group G, and the order of the quotient group G / N is m, then show that for each element $x \in G, x^{m} \in N$.

UG/CBCS/B.Sc./Hons./4th Sem./Mathematics/MATHGE4/2021

MATHGE4-V

Numerical Methods

GROUP-A

Answer all the following questions

1. (a) Define the degree of precision of a quadrature formula. What is the degree of precision of the Trapezoidal rule?
(b) Evaluate: $\left(\frac{\Delta^{2}}{E}\right) x^{3}$
(c) Round off the numbers to three decimal places: $6.445 \times 10^{3}, 0.999500$.
(d) If $f(x)=4 \cos x+6 x$, find the relative percentage error in $f(x)$ for $x=0$, if the error is $x=0.005$.
(e) Give the geometrical significance of $f^{\prime}(x)$ in approximation of the root of the equation $f(x)=0$ by Newton-Raphson method.

GROUP-B

Answer all the following questions

2. (a) In usual notation, show that $\Delta^{m}\left(\frac{1}{x}\right)=\frac{(-1)^{m} m!h^{m}}{x(x+h)(x+2 h) \ldots(x+m h)}$
(b) A certain function f, defined on the interval $(0,1)$ is such that $f(0)=0$, $f\left(\frac{1}{2}\right)=-1, f(1)=0$. Find the quadratic polynomial $p(x)$ which agrees with $f(x)$ for $x=0,1 / 2,1$.
If $\left|\frac{d^{3} f}{d x^{3}}\right| \leq 1$ for $0 \leq x \leq 1$, show that $|f(x)-p(x)| \leq \frac{1}{12}$ for $0 \leq x \leq 1$.
3. (a) Solve the following system of linear equations by Gauss elimination process:

$$
a+2 b+c=0 ; 2 a+2 b+3 c=3 ;-a-3 b=2
$$

(b) Using modified Euler's method, find $y(0.2)$ for the differential equation $y^{\prime}=\frac{x-y}{2}, y(0)=1$ with step length 0.1 .
4. (a) Find the smallest positive root of the equation $\cos x-5 x+1=0$ using the iterative method, correct up to two decimal places.
(b) Prove that $f\left(x_{k}, x_{k-1}, x_{k-2}, \cdots \cdots \cdots, x_{k-n}\right)=\frac{\nabla^{n} f\left(x_{k}\right)}{h^{n} n!}$, where the arguments are equispaced and ∇ being a backward difference operator. Hence show that

$$
f\left(x_{n}, x_{n-1}, x_{n-2}, \cdots \cdots \cdots, x_{0}\right)=\frac{\nabla^{n} f\left(x_{n}\right)}{h^{n} n!}
$$

GROUP-C

Answer all the following questions

$7 \times 2=14$
5. Using Lagrange interpolation, find a polynomial $P(x)$ of degree <4 satisfying

$$
P(1)=1, \quad P(2)=4, \quad P(3)=1, \quad P(4)=5
$$

6. Evaluate $\int_{1}^{4} \frac{\log _{e}\left(1+0.5 x+x^{2}\right)}{0.5+x} d x$, by Trapezoidal rule, correct up to 6 decimal places, taking 13 ordinates.
