

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 4th Semester Examination, 2021

GE-MATHEMATICS

Full Marks: 60

ASSIGNMENT

The figures in the margin indicate full marks. All symbols are of usual significance.

The question paper contains MATHGE4-I, MATHGE4-II, MATHGE4-III, MATHGE4-IV & MATHGE4-V. The candidates are required to answer any *one* from the *five* courses.

Candidates should mention it clearly on the Answer Book.

MATHGE4-I

CAL. GEO. AND DE.

GROUP-A

- 1. Answer the following questions:
 - (a) Let the axes of a given coordinate system be changed to lines making an angle α with the corresponding old axes, without changing the origin. Let the coordinate of a point A with respect to the first system be $(\sqrt{3}, 1)$ and its coordinates with respect to the second system be (2, 0). Then find the value of α .
 - (b) Solve: $\frac{dy}{dx}$ + tan y tan x = cos x sec y
 - (c) Find the area of the lemniscates $r^2 = a^2 \cos 2\theta$.
 - (d) Find the envelope of the family of straight lines $y = mx + \sqrt{a^2m^2 + b^2}$, *m* being the parameter.
 - (e) Determine the conic represented by $3x^2 + 10xy + 3y^2 2x 14y 13 = 0$.

GROUP-B

Answer all the following questions $12 \times 3 = 36$

2. (a) If by a rotation of coordinate axes the expressions 5 $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ is changed to

$$a'x^{2} + 2h'xy + b'y^{2} + 2g'x + 2f'y + c' = 0$$

show that a' + b' = a + b and $a'b' - h'^2 = ab - h^2$.

(b) Test whether the equation $(x + y)^2 dx - (y^2 - 2xy - x^2) dy = 0$ is exact and hence 3 solve.

(c) If
$$I_n = \int_{0}^{\pi/2} x \sin^n x \, dx$$
, $n > 1$ show that $I_n = \frac{n-1}{n} I_{n-2} + \frac{1}{n^2}$.
 $\pi/2$
4

Hence evaluate $\int_{0}^{\pi/2} x \sin^5 x \, dx$.

 $2 \times 5 = 10$

UG/CBCS/B.Sc./Hons./4th Sem./Mathematics/MATHGE4/2021

3. (a) Show that the envelope of the family of circles whose centres lie on the parabola $y^2 = 4ax$ and which pass through its vertex is the curve $y^2(2a + x) + x^3 = 0$.

(b) Evaluate:
$$\lim_{x \to \infty} \left\{ x - \sqrt[n]{(x - a_1)(x - a_2) \cdots (x - a_n)} \right\}$$
 4

(c) If
$$y = a(x + \sqrt{x^2 - 1})^n + b(x + \sqrt{x^2 - 1})^n$$
 prove that $(x^2 - 1)y_{n+2} + x(2n+1)y_{n+1} = 0$.

- 4. (a) Solve: $(x^2 + y^2 + x) dx + xy dy = 0$
 - (b) If a plane passes through a fixed point (f, g, h) and cuts the axes at the points P, Q, R respectively then show that the locus of the centre of the sphere passing through the origin and the points P, Q, R is $\frac{f}{x} + \frac{g}{y} + \frac{h}{z} = 2$.

(c) Find the volume of the solid generated by revolving the cycloid $x = a(\theta + \sin \theta)$, $y = a(1 + \cos \theta)$

about its base.

GROUP-C

Answer following questions	$7 \times 2 = 14$
5. (a) Show that the locus of the point of intersection of perpendicular tangents to the conic $l/r = 1 + e \cos \theta$ is $r^2(1 - e^2) + 2ler \cos \theta - 2l^2 = 0$.	5
(b) Find the range of values of x for which $y = x^4 - 6x^3 + 12x^2 + 5x + 7$ is concave upwards.	2
6. (a) Show that the points of intersection of the curve 2^{3} 2^{3} 2^{3} 2^{3} 1^{3} 1^{3} 1^{4} 1^{3} 1^{4} 1^{3} $1^{$	4

 $2v^{3} - 2x^{2}v - 4xv^{2} + 4x^{3} - 14xv + 6v^{2} + 4x^{2} + 6v + 1 = 0$

and its asymptotes lie on the line 8x + 2y + 1 = 0.

(b) Find the trace the curve of $y^2(2a - x) = x^3$.

MATHGE4-II ALGEBRA **GROUP-A**

1. Answer the following questions: (a) Find $\sin^{-1}(2i)$ and $\sin^{-1}(2i)$.

(b) If α , β , γ be the roots of the equation $x^3 + px^2 + qx + r = 0$, find the equation whose roots are $\frac{1}{\alpha}, \frac{1}{\beta}, \frac{1}{\gamma}$.

(c) Let a, b, c be positive real numbers. Prove that $\frac{a}{b} + \frac{b}{c} + \frac{c}{a} \ge 3$. 2

(d) Give an example of a symmetric relation which is neither reflexive nor transitive. 2 Justify your answer.

 $2 \times 5 = 10$

2 2

3

4

3

5

4

(e) Find the eigenvalues and eigenvectors of the matrix $\begin{vmatrix} 3 & 0 \\ 2 & 3 \end{vmatrix}$.

GROUP-B

Answer the following questions $12 \times 3 = 36$

2. (a) Let z be a variable complex number such that the ratio $\frac{z-i}{z+1}$ is purely imaginary. 3 Show that the point z lies on a circle in the complex plane.

- (b) If $z = \cos\theta + i\sin\theta$ and $\zeta = \cos\varphi + i\sin\varphi$, prove that $\frac{z^m}{\zeta^n} + \frac{\zeta^n}{z^m} = 2\cos(m\theta n\varphi)$, 4 where *m*, *n* are integers.
- (c) Find the general values and the principal value of i^{x+iy} , where x, y are real. Also 3+2 check the principal value for x is an even and an odd integer.
- 3. (a) Determine the nature of the roots of the equation 3 $x^{6} + 2x^{5} - 5x^{4} - 3x^{2} - 2x + 19 = 0$, by using the Descartes' Rule of signs.
 - (b) Let α , β , γ be the roots of the equation $x^3 5x^2 + 3x 1 = 0$. Find the equations 4+1 whose roots are $\alpha \beta \gamma^2$, $\beta \gamma \alpha^2$, $\gamma \alpha \beta^2$ and deduce the condition that the roots of the given equation may be in geometric progression.
 - (c) Using the Cayley-Hamilton Theorem, find the inverse of the matrix

$$\begin{bmatrix} 1 & -1 & 0 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix}$$

- 4. (a) Let $f: A \to B$ be a mapping. A relation ρ is defined on A by " $x\rho y$ if and only if $f(x) = f(y), x, y \in A$ ". Show that ρ is an equivalence relation on A.
 - (b) If $a \equiv b \pmod{m}$ and $a \equiv b \pmod{n}$ where gcd(m, n) = 1, prove that 3 $a \equiv b \pmod{mn}$.
 - (c) Reduce the following matrix:

7	0	2	1	0	
1	0	2	0	1	
2	8	4	-4	2	
3	5	1	$ \begin{array}{c} 1 \\ 0 \\ -4 \\ 3 \end{array} $	6	

into row reduced echelon form and hence find its rank.

GROUP-C

Answer	the following questions	$7 \times 2 = 14$
5. (a) If $n \in \mathbb{Z}$, then show that $2n+1 \le 2$	2^n for all $n \ge 3$.	3

(b) Solve the equation $x^4 + 3x^3 + 5x^2 + 4x + 2 = 0$.

4

4+1

4

2

UG/CBCS/B.Sc./Hons./4th Sem./Mathematics/MATHGE4/2021

- 6. (a) Let x be an eigen-vector corresponding to the eigen-value λ of a matrix M and n be a positive integer. Show that x is an eigen-vector of M^n corresponding to λ^n .
 - (b) Determine the conditions for which the following system of equations has (i) no solution, (ii) unique solution and (iii) many solution:

x + 2y + z = 1 2x + y + 3z = k $x + \alpha y + z = k + 1$

MATHGE4-III

DIFFERENTIAL EQUATION AND VECTOR CALCULUS

GROUP-A

Answer *all* the following questions

 $2 \times 5 = 10$

2

5

- 1. (a) Find the Wronskian of x and xe^x . Hence, conclude whether or not these are linearly independent.
 - (b) Solve $x^2y'' + xy' 9y = 0$, given that $y = x^3$ is a solution.
 - (c) Find $\nabla(\log |r|)$, where $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$.
 - (d) If vectors \mathbf{a} and \mathbf{b} are irrotational, show that $\mathbf{a} \times \mathbf{b}$ is solenoidal.
 - (e) What are the order and degree of the differential equation of the family of curves $y^2 = 2c(x + \sqrt{c})$.

GROUP-B

Answer all the following questions $12 \times 3 = 36$

2. (a) By computing the appropriate Lipschitz constant, show that the following function 6 $f(x, y) = x^2 \cos y + y \sin^2 x$

satisfy Lipschitz condition on the domain $D: |x| \le 1$, $|y| < \infty$ of xy plane.

(b) Solve the differential equation
$$\frac{d^2y}{dx^2} + a^2y = \sec ax$$
 with the symbolic operator *D*. 6

3. (a) Apply the method of variation of parameters to solve the following differential 6 equation

$$(x-1)\frac{d^{2}y}{dx^{2}} - x\frac{dy}{dx} + y = (x-1)^{2}$$

(b) If $\vec{a} = (2y+3)\hat{i} + zx\hat{j} + (yz-x)\hat{k}$, evaluate $\int \vec{a} \cdot \vec{dr}$. Where the integration is over 6 the curve $x = 2t^2$, y = t, $z = t^3$ from t = 0 to t = 1.

- 4. (a) Show that $\mathbf{F} = 2xyz^2\mathbf{i} + (x^2z^2 + z\cos yz)\mathbf{j} + (2x^2yz + y\cos yz)\mathbf{k}$ is a conservative field of force. Find the scalar potential \emptyset . Find also the work done in moving an object in this field from the point (0, 0, 1) to $(1, \frac{\pi}{4}, 2)$.
 - (b) Use method of undetermined coefficient to solve the following differential 6 equation:

$$(D^2 - 4D + 4)y = x^3 e^{2x} + x e^{2x}$$
, where $D \equiv \frac{d}{dx}$

GROUP-C

Answer all the following questions $7 \times 2 = 14$

5. (a) If $y_1(x)$ and $y_2(x)$ are any two solutions of 3 $a_0(x)y''(x) + a_1(x)y'(x) + a_2(x)y(x) = 0$, show that the linear combination $c_1y_1(x) + c_2y_2(x)$, where c_1 and c_2 are constants, is also a solution of the given equation.

(b) Solve:
$$\frac{dx}{y+z} = \frac{dy}{z+x} = \frac{dz}{x+y}$$

6. Evaluate the line integral $\int_{C} \mathbf{F} \cdot \mathbf{dr} \text{ wehre } \mathbf{F} = (y^{2} + z^{2})\mathbf{i} + (z^{2} + x^{2})\mathbf{j} + (x^{2} + y^{2})\mathbf{k}$ from (0, 0, 0) to (2, 4, 8) and *C* is the curve given by $\mathbf{r} = t\mathbf{i} + t^{2}\mathbf{j} + t^{3}\mathbf{k}$.

MATHGE4-IV

GROUP THEORY

GROUP-A

Answer all the following questions

 $2 \times 5 = 10$

1. Find the order of the permutation

(1	2	3	4	5	6)
$\begin{pmatrix} 1\\ 2 \end{pmatrix}$	1	5	4	6	3)

in the permutation group S_6 .

- 2. Let $G = (\mathbb{Z}_8, +)$ and $f : G \to G$ be a homomorphism defined by f([x]) = 2[x]Find ker f.
- 3. For each positive integer $n \ge 2$, let U_n denotes the set of all positive integers that are smaller than *n* and relatively prime to *n*. Consider the group U_n , equipped with multiplication modulo *n*. Show that for any integer n > 2, there exist at least two elements in U_n that satisfy $x^2 = 1$.
- 4. Show that if two right cosets Ha and Hb of a group G be distinct, then the left cosets $a^{-1}H$ and $b^{-1}H$ are also distinct.
- 5. Prove that the group of integers $(\mathbb{Z}, +)$ is not isomorphic to the group of rationals $(\mathbb{Q}, +)$.

GROUP-B

Answer all the following questions

12×3=36

4

6. (a) Show that the set \mathbb{Z}_1 of all odd integers forms a group with respect to the binary operation * defined on \mathbb{Z}_1 by a * b := a + b - 3 for $a, b \in \mathbb{Z}_1$.

UG/CBCS/B.Sc./Hons./4th Sem./Mathematics/MATHGE4/2021

(b) For $\theta \in \mathbb{R}$, let \mathbb{R}_{θ} denotes the rotation matrix

$$\mathbb{R}_{\theta} := \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}$$

Show that the set $SL_2(\mathbb{R}) := \{\mathbb{R}_{\theta} : 0 \le \theta < 2\pi\}$ forms a group under matrix multiplication. Find two non-trivial finite subgroups of $SL_2(\mathbb{R})$.

- 7. (a) Prove that there does not exist an onto homomorphism from the group (\mathbb{Z}_6 , +) to 4 the group $(\mathbb{Z}_4, +)$.
 - (b) Show that $(\mathbb{Q}, +)$ cannot be isomorphic to (\mathbb{Q}^*, \cdot) , where $\mathbb{Q}^* = \mathbb{Q} \{0\}$.
 - (c) Find all the subgroups of D_4 .
- 8. (a) Suppose the table below is a group table. Fill in the blank entries.

*	е	а	b	С	d
е	е				
а		b			е
b		С	d	е	
С		d		а	b
d					

Is this group cyclic? — Justify.

(b) Let \mathbb{R} denote the group of all real numbers under addition and \mathbb{Z} denote the group of all integers under addition. Let C denote the unit circle in the complex plane, i.e., $C := \{z \in \mathbb{C} : |z| = 1\}.$

Consider C as the group under usual complex multiplication. Exhibit a surjective homomorphism $\varphi \colon \mathbb{R} \to \mathbb{C}$ with ker $\varphi = \mathbb{Z}$. Hence conclude that \mathbb{R}/\mathbb{Z} is isomorphic to \mathbb{C} .

GROUP-C

Answer all the following questions	$7 \times 2 = 14$
9. (a) If <i>H</i> is a subgroup of a group <i>G</i> such that $(aH)(Hb)$ for any $a, b \in G$ is either a left or a right coset of <i>H</i> in <i>G</i> , then prove that <i>H</i> is normal.	3
(b) Show that homomorphic image of a finite group is finite.	4
10.(a) For a positive integer $n \ge 2$, exhibit a homomorphism from the symmetric group S_n to the group \mathbb{Z}_2 of integers modulo 2. What is the kernel of this homomorphism?	4
 (b) In N is a normal subgroup of a group G, and the order of the quotient group G/N is m, then show that for each element x ∈ G, x^m ∈ N. 	3

6

4

7

4

5

MATHGE4-V

NUMERICAL METHODS

GROUP-A

Answer *all* the following questions $2 \times 5 = 10$

- 1. (a) Define the degree of precision of a quadrature formula. What is the degree of precision of the Trapezoidal rule?
 - (b) Evaluate: $\left(\frac{\Delta^2}{E}\right)x^3$
 - (c) Round off the numbers to three decimal places: 6.445×10^3 , 0.999500.
 - (d) If $f(x) = 4\cos x + 6x$, find the relative percentage error in f(x) for x = 0, if the error is x = 0.005.
 - (e) Give the geometrical significance of f'(x) in approximation of the root of the equation f(x) = 0 by Newton-Raphson method.

GROUP-B

Answer *all* the following questions $12 \times 3 = 36$

2. (a) In usual notation, show that
$$\Delta^m \left(\frac{1}{x}\right) = \frac{(-1)^m m! h^m}{x(x+h)(x+2h)\dots(x+mh)}$$
 6

- (b) A certain function f, defined on the interval (0, 1) is such that f(0) = 0, 6 $f(\frac{1}{2}) = -1$, f(1) = 0. Find the quadratic polynomial p(x) which agrees with f(x) for x = 0, 1/2, 1. If $\left|\frac{d^3f}{dx^3}\right| \le 1$ for $0 \le x \le 1$, show that $|f(x) - p(x)| \le \frac{1}{12}$ for $0 \le x \le 1$.
- 3. (a) Solve the following system of linear equations by Gauss elimination process: a + 2b + c = 0; 2a + 2b + 3c = 3; -a - 3b = 2
 - (b) Using modified Euler's method, find y(0.2) for the differential equation 6 $y' = \frac{x - y}{2}$, y(0) = 1 with step length 0.1.
- 4. (a) Find the smallest positive root of the equation $\cos x 5x + 1 = 0$ using the iterative 6 method, correct up to two decimal places.
 - (b) Prove that $f(x_k, x_{k-1}, x_{k-2}, \dots, x_{k-n}) = \frac{\nabla^n f(x_k)}{h^n n!}$, where the arguments are equispaced and ∇ being a backward difference operator. Hence show that

$$f(x_n, x_{n-1}, x_{n-2}, \dots, \dots, x_0) = \frac{\nabla^n f(x_n)}{h^n n!}$$

6

GROUP-C

 $7 \times 2 = 14$ Answer *all* the following questions

7

5. Using Lagrange interpolation, find a polynomial
$$P(x)$$
 of degree < 4 satisfying 7
 $P(1) = 1, P(2) = 4, P(3) = 1, P(4) = 5$

Evaluate $\int_{1}^{4} \frac{\log_e(1+0.5x+x^2)}{0.5+x} dx$, by Trapezoidal rule, correct up to 6 decimal 6.

×

places, taking 13 ordinates.